We study a class of Lorentz violating quantum field theories that contain higher space derivatives, but no higher time derivatives, and become renormalizable in the large N expansion. The fixed points of their renormalization-group flows provide examples of exactly "weighted scale invariant" theories, which are noticeable Lorentz violating generalizations of conformal field theories. We classify the scalar and fermion models that are causal, stable and unitary. Solutions exist also in four and higher dimensions, even and odd. In some explicit four dimensional examples, we compute the correlation functions to the leading order in 1/N and the critical exponents to the subleading order. We construct also RG flows interpolating between pairs of fixed points.

Weighted scale invariant quantum field theories

ANSELMI, DAMIANO
2008

Abstract

We study a class of Lorentz violating quantum field theories that contain higher space derivatives, but no higher time derivatives, and become renormalizable in the large N expansion. The fixed points of their renormalization-group flows provide examples of exactly "weighted scale invariant" theories, which are noticeable Lorentz violating generalizations of conformal field theories. We classify the scalar and fermion models that are causal, stable and unitary. Solutions exist also in four and higher dimensions, even and odd. In some explicit four dimensional examples, we compute the correlation functions to the leading order in 1/N and the critical exponents to the subleading order. We construct also RG flows interpolating between pairs of fixed points.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/122722
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 41
social impact