This paper delves into the pivotal role of water electrolysis (WE) in green hydrogen production, a process utilizing renewable energy sources through electrolysis. The term "green hydrogen" signifies its distinction from conventional "grey" or "brown" hydrogen produced from fossil fuels, emphasizing the importance of decarbonization in the hydrogen value chain. WE becomes a linchpin, balancing surplus green energy, stabilizing the grid, and addressing challenges in hard-to-abate sectors like long-haul transport and heavy industries. This paper navigates through electrolysis variants, technological challenges, and the crucial association between electrolytic hydrogen production and renewable energy sources (RESs). Energy consumption aspects are scrutinized, highlighting the need for optimization strategies to enhance efficiency. This paper systematically addresses electrolysis fundamentals, technologies, scaling issues, and the nexus with energy sources. It emphasizes the transformative potential of electrolytic hydrogen in the broader energy landscape, underscoring its role in shaping a sustainable future. Through a systematic analysis, this study bridges the gap between detailed technological insights and the larger energy system context, offering a holistic perspective. This paper concludes by summarizing key findings, showcasing the prospects, challenges, and opportunities associated with hydrogen production via water electrolysis for the energy transition.

Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and Perspectives

Franco, Alessandro;Giovannini, Caterina
2023-01-01

Abstract

This paper delves into the pivotal role of water electrolysis (WE) in green hydrogen production, a process utilizing renewable energy sources through electrolysis. The term "green hydrogen" signifies its distinction from conventional "grey" or "brown" hydrogen produced from fossil fuels, emphasizing the importance of decarbonization in the hydrogen value chain. WE becomes a linchpin, balancing surplus green energy, stabilizing the grid, and addressing challenges in hard-to-abate sectors like long-haul transport and heavy industries. This paper navigates through electrolysis variants, technological challenges, and the crucial association between electrolytic hydrogen production and renewable energy sources (RESs). Energy consumption aspects are scrutinized, highlighting the need for optimization strategies to enhance efficiency. This paper systematically addresses electrolysis fundamentals, technologies, scaling issues, and the nexus with energy sources. It emphasizes the transformative potential of electrolytic hydrogen in the broader energy landscape, underscoring its role in shaping a sustainable future. Through a systematic analysis, this study bridges the gap between detailed technological insights and the larger energy system context, offering a holistic perspective. This paper concludes by summarizing key findings, showcasing the prospects, challenges, and opportunities associated with hydrogen production via water electrolysis for the energy transition.
2023
Franco, Alessandro; Giovannini, Caterina
File in questo prodotto:
File Dimensione Formato  
sustainability-15-16917 (2).pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1228767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact