Microplastics (MPs) (0.1 µm–5 mm particles) have been documented in oceans and seas. Bivalve molluscs (BMs) can accumulate MPs and transfer to humans through the food chain. BMs (especially mussels) are used to assess MPs’ contamination, but the genus Donax has not been thoroughly investigated. The aim of this study was to detect and characterize MPs in D. trunculus specimens collected along the Tuscan coast (Italy), and to assess the potential risk for consumers. The samples (~10 g of tissue and intervalval liquid from 35 specimens) were digested using a solution of 10% KOH, subjected to NaCl density separation, and filtered through 5 μm pore-size filters. All items were morphologically classified and measured, and their mean abundance (MA) was calculated. Furthermore, 20% of them were analyzed by Raman spectroscopy and, based on the obtained results, the MA was recalculated (corrected MA) and the annual human exposure was estimated. In the 39 samples analyzed, 85 items fibers (n = 45; 52.94%) and fragments (n = 40; 47.06%) were found. The MA was 0.23 ± 0.17 items/grww. Additionally, 83.33% of the items were confirmed as MPs (polyethylene and polyethylene terephthalate). Based on the correct MA (0.18 MPs/grww), D. trunculus consumers could be exposed to 19.2 MPs/per capita/year. The health risk level of MPs was classified as level III (moderate).

The Occurrence of Microplastics in Donax trunculus (Mollusca: Bivalvia) Collected along the Tuscany Coast (Mediterranean Sea)

Malloggi C.
Co-primo
;
Guidi M.;Armani A.
Ultimo
2024-01-01

Abstract

Microplastics (MPs) (0.1 µm–5 mm particles) have been documented in oceans and seas. Bivalve molluscs (BMs) can accumulate MPs and transfer to humans through the food chain. BMs (especially mussels) are used to assess MPs’ contamination, but the genus Donax has not been thoroughly investigated. The aim of this study was to detect and characterize MPs in D. trunculus specimens collected along the Tuscan coast (Italy), and to assess the potential risk for consumers. The samples (~10 g of tissue and intervalval liquid from 35 specimens) were digested using a solution of 10% KOH, subjected to NaCl density separation, and filtered through 5 μm pore-size filters. All items were morphologically classified and measured, and their mean abundance (MA) was calculated. Furthermore, 20% of them were analyzed by Raman spectroscopy and, based on the obtained results, the MA was recalculated (corrected MA) and the annual human exposure was estimated. In the 39 samples analyzed, 85 items fibers (n = 45; 52.94%) and fragments (n = 40; 47.06%) were found. The MA was 0.23 ± 0.17 items/grww. Additionally, 83.33% of the items were confirmed as MPs (polyethylene and polyethylene terephthalate). Based on the correct MA (0.18 MPs/grww), D. trunculus consumers could be exposed to 19.2 MPs/per capita/year. The health risk level of MPs was classified as level III (moderate).
2024
Malloggi, C.; Nalbone, L.; Bartalena, S.; Guidi, M.; Corradini, C.; Foti, A.; Gucciardi, P. G.; Giarratana, F.; Susini, F.; Armani, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1229847
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact