An improved spectral coefficient method based on Chebyshev polynomials of the second kind is employed to solve the vector radiative transfer equation under the assumption of parallel-plane atmosphere and Rayleigh scattering. The solver is extended to consider a Lambertian surface at the bottom of the atmosphere. The computational properties of the proposed algorithm are analyzed and the validity of the implemented method is tested against a publicly available benchmark dataset.
Improved Chebyshev Spectral Method Modeling for Vector Radiative Transfer in Atmospheric Propagation
Tavanti, Emanuele
;
2024-01-01
Abstract
An improved spectral coefficient method based on Chebyshev polynomials of the second kind is employed to solve the vector radiative transfer equation under the assumption of parallel-plane atmosphere and Rayleigh scattering. The solver is extended to consider a Lambertian surface at the bottom of the atmosphere. The computational properties of the proposed algorithm are analyzed and the validity of the implemented method is tested against a publicly available benchmark dataset.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
10482859.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
4.74 MB
Formato
Adobe PDF
|
4.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


