The introduction of artificial intelligence (AI) in video surveillance systems has significantly transformed security practices, allowing for autonomous monitoring and real-time detection of threats. However, the effectiveness and efficiency of AI-powered surveillance rely heavily on the hardware infrastructure, specifically high-performance computing (HPC) architectures. This article examines the impact of different platforms for HPC edge servers, including x86 and ARM CPU-based systems and Graphics Processing Units (GPUs), on the speed and accuracy of video processing tasks. By using advanced deep learning frameworks, a video surveillance system based on YOLO object detection and DeepSort tracking algorithms is developed and evaluated. This study thoroughly assesses the strengths, limitations, and suitability of different hardware architectures for various AI-based surveillance scenarios.
Edge HPC Architectures for AI-Based Video Surveillance Applications
Federico Rossi
Primo
;Sergio SaponaraSecondo
2024-01-01
Abstract
The introduction of artificial intelligence (AI) in video surveillance systems has significantly transformed security practices, allowing for autonomous monitoring and real-time detection of threats. However, the effectiveness and efficiency of AI-powered surveillance rely heavily on the hardware infrastructure, specifically high-performance computing (HPC) architectures. This article examines the impact of different platforms for HPC edge servers, including x86 and ARM CPU-based systems and Graphics Processing Units (GPUs), on the speed and accuracy of video processing tasks. By using advanced deep learning frameworks, a video surveillance system based on YOLO object detection and DeepSort tracking algorithms is developed and evaluated. This study thoroughly assesses the strengths, limitations, and suitability of different hardware architectures for various AI-based surveillance scenarios.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.