We consider spin manifolds with an Einstein metric, either Riemannian or indefinite, for which there exists a Killing spinor. We describe the intrinsic geometry of nondegenerate hypersurfaces in terms of a PDE satisfied by a pair of induced spinors, akin to the generalized Killing spinor equation. Conversely, we prove an embedding result for real analytic pseudo-Riemannian manifolds carrying a pair of spinors satisfying this condition.
Killing spinors and hypersurfaces
Conti, Diego
;
2024-01-01
Abstract
We consider spin manifolds with an Einstein metric, either Riemannian or indefinite, for which there exists a Killing spinor. We describe the intrinsic geometry of nondegenerate hypersurfaces in terms of a PDE satisfied by a pair of induced spinors, akin to the generalized Killing spinor equation. Conversely, we prove an embedding result for real analytic pseudo-Riemannian manifolds carrying a pair of spinors satisfying this condition.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
2111.13202v3.pdf
Open Access dal 22/05/2025
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
246.84 kB
Formato
Adobe PDF
|
246.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


