In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B₀(T²) of properly convex ℝℙ²-structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of B₀(T²) with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the S¹-action on B₀(T²), given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the SL(2,ℝ)-action over B₀(T²).

Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus

Andrea Tamburelli
2024-01-01

Abstract

In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B₀(T²) of properly convex ℝℙ²-structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of B₀(T²) with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the S¹-action on B₀(T²), given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the SL(2,ℝ)-action over B₀(T²).
2024
Rungi, Nicholas; Tamburelli, Andrea
File in questo prodotto:
File Dimensione Formato  
s12220-023-01491-8.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 540.72 kB
Formato Adobe PDF
540.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2112.08979v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 446.79 kB
Formato Adobe PDF
446.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1232613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact