In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B₀(T²) of properly convex ℝℙ²-structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of B₀(T²) with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the S¹-action on B₀(T²), given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the SL(2,ℝ)-action over B₀(T²).
Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus
Andrea Tamburelli
2024-01-01
Abstract
In this paper we prove the existence of a pseudo-Kähler structure on the deformation space B₀(T²) of properly convex ℝℙ²-structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of B₀(T²) with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmüller space. We show that the S¹-action on B₀(T²), given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the SL(2,ℝ)-action over B₀(T²).| File | Dimensione | Formato | |
|---|---|---|---|
|
s12220-023-01491-8.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
540.72 kB
Formato
Adobe PDF
|
540.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
2112.08979v1.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
446.79 kB
Formato
Adobe PDF
|
446.79 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


