We proved in previous work that all real nilpotent Lie algebras of dimension up to 10 carrying an ad-invariant metric are nice, i.e. they admit a nice basis in the sense of Lauret et al. In this paper, we show by constructing explicit examples that nonnice irreducible nilpotent Lie algebras admitting an ad-invariant metric exist for every dimension greater than 10 and every nilpotency step greater than 2. In the way of doing so, we introduce a method to construct Lie algebras with ad-invariant metrics called the single extension, as a parallel to the well-known double extension procedure.

Ad-invariant metrics on nonnice nilpotent Lie algebras

Conti, D.
;
2024-01-01

Abstract

We proved in previous work that all real nilpotent Lie algebras of dimension up to 10 carrying an ad-invariant metric are nice, i.e. they admit a nice basis in the sense of Lauret et al. In this paper, we show by constructing explicit examples that nonnice irreducible nilpotent Lie algebras admitting an ad-invariant metric exist for every dimension greater than 10 and every nilpotency step greater than 2. In the way of doing so, we introduce a method to construct Lie algebras with ad-invariant metrics called the single extension, as a parallel to the well-known double extension procedure.
2024
Conti, D.; del Barco, V.; Rossi, F. A.
File in questo prodotto:
File Dimensione Formato  
2111.11274v2.pdf

embargo fino al 05/04/2025

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 286.99 kB
Formato Adobe PDF
286.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1232614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact