We discuss generalizations of the notions of projective transformations acting on affine model of Riemann-Cartan and Riemann-Cartan-Weyl gravity which preserve the projective structure of the light-cones. We show how the invariance under some projective transformations can be used to recast a Riemann-Cartan-Weyl geometry either as a model in which the role of the Weyl gauge potential is played by the torsion vector, which we call torsion-gauging, or as a model with traditional Weyl (conformal) invariance.

Projective transformations in metric-Affine and Weylian geometries

Sauro D.
Primo
;
Zanusso O.
2023-01-01

Abstract

We discuss generalizations of the notions of projective transformations acting on affine model of Riemann-Cartan and Riemann-Cartan-Weyl gravity which preserve the projective structure of the light-cones. We show how the invariance under some projective transformations can be used to recast a Riemann-Cartan-Weyl geometry either as a model in which the role of the Weyl gauge potential is played by the torsion vector, which we call torsion-gauging, or as a model with traditional Weyl (conformal) invariance.
2023
Sauro, D.; Martini, R.; Zanusso, O.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1234068
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact