Full-field methods can significantly improve measurement quality in experimental dynamic analysis, which is a critical issue in the industry. Optical methods based on digital image correlation (DIC) are widely used in this regard. This paper aims to present an experimental setup to perform full-field vibration measurements using off-the-shelf components costing tens or hundreds of euros rather than thousands. This allows for the construction of multiple measurement systems with a small investment, giving students hands-on experience. The system’s inherent low cost, ease of assembly, and ease of use ensure that the student can handle the system from the design stage to the setup stage, and finally to the testing stage. A simple Matlab app was developed to set up and control the test, analyze data and display the results. The system’s modularity allows it to further extend measurement capabilities over time, performing 2D measurements or more complex 3D measurements under single or multiple inputs. A prototype of the proposed system was assembled and tested on a planar specimen for 2D DIC measurements. The total cost of the equipment was less than 250 €. The setup was validated for geometrically complex torsional deformed shapes up to 660 Hz.
Educational Test Bench for Full Field Vibration Measurements
Neri P.
Primo
;Paoli A.;Razionale A. V.;Barone S.
2023-01-01
Abstract
Full-field methods can significantly improve measurement quality in experimental dynamic analysis, which is a critical issue in the industry. Optical methods based on digital image correlation (DIC) are widely used in this regard. This paper aims to present an experimental setup to perform full-field vibration measurements using off-the-shelf components costing tens or hundreds of euros rather than thousands. This allows for the construction of multiple measurement systems with a small investment, giving students hands-on experience. The system’s inherent low cost, ease of assembly, and ease of use ensure that the student can handle the system from the design stage to the setup stage, and finally to the testing stage. A simple Matlab app was developed to set up and control the test, analyze data and display the results. The system’s modularity allows it to further extend measurement capabilities over time, performing 2D measurements or more complex 3D measurements under single or multiple inputs. A prototype of the proposed system was assembled and tested on a planar specimen for 2D DIC measurements. The total cost of the equipment was less than 250 €. The setup was validated for geometrically complex torsional deformed shapes up to 660 Hz.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.