We propose two approaches, based on Riemannian optimization for computing a stochastic approximation of the th root of a stochastic matrix . In the first approach, the approximation is found in the Riemannian manifold of positive stochastic matrices. In the second approach, we introduce the Riemannian manifold of positive stochastic matrices sharing with the Perron eigenvector and we compute the approximation of the th root of in such a manifold. This way, differently from the available methods based on constrained optimization, and its th root approximation share the Perron eigenvector. Such a property is relevant, from a modeling point of view, in the embedding problem for Markov chains. The extended numerical experimentation shows that, in the first approach, the Riemannian optimization methods are generally faster and more accurate than the available methods based on constrained optimization. In the second approach, even though the stochastic approximation of the th root is found in a smaller set, the approximation is generally more accurate than the one obtained by standard constrained optimization.

Stochastic \({p}\)th Root Approximation of a Stochastic Matrix: A Riemannian Optimization Approach

Fabio Durastante
Membro del Collaboration Group
;
Beatrice Meini
Membro del Collaboration Group
2024-01-01

Abstract

We propose two approaches, based on Riemannian optimization for computing a stochastic approximation of the th root of a stochastic matrix . In the first approach, the approximation is found in the Riemannian manifold of positive stochastic matrices. In the second approach, we introduce the Riemannian manifold of positive stochastic matrices sharing with the Perron eigenvector and we compute the approximation of the th root of in such a manifold. This way, differently from the available methods based on constrained optimization, and its th root approximation share the Perron eigenvector. Such a property is relevant, from a modeling point of view, in the embedding problem for Markov chains. The extended numerical experimentation shows that, in the first approach, the Riemannian optimization methods are generally faster and more accurate than the available methods based on constrained optimization. In the second approach, even though the stochastic approximation of the th root is found in a smaller set, the approximation is generally more accurate than the one obtained by standard constrained optimization.
2024
Durastante, Fabio; Meini, Beatrice
File in questo prodotto:
File Dimensione Formato  
2307.14040v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 544.59 kB
Formato Adobe PDF
544.59 kB Adobe PDF Visualizza/Apri
23m1589463.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PthRoot.pdf

accesso aperto

Descrizione: Documento in postprint
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 750.54 kB
Formato Adobe PDF
750.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1236167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact