We report a strategy for the realization of NMR chemosensors based on the spontaneous self-assembly of lower rim pyridinium-functionalized tetraphopshonate cavitands on commercial silica nanoparticles. These nanohybrids enable the selective detection of physiologically relevant N-methylated amines, with a limit of detection of 31 mu M, via STD-based NMR experiments, achieving for the first time fine structural selectivity in nanoparticle-assisted NMR chemosensing.
Selective NMR detection of N-methylated amines using cavitand-decorated silica nanoparticles as receptors
Cesari A.Primo
;
2022-01-01
Abstract
We report a strategy for the realization of NMR chemosensors based on the spontaneous self-assembly of lower rim pyridinium-functionalized tetraphopshonate cavitands on commercial silica nanoparticles. These nanohybrids enable the selective detection of physiologically relevant N-methylated amines, with a limit of detection of 31 mu M, via STD-based NMR experiments, achieving for the first time fine structural selectivity in nanoparticle-assisted NMR chemosensing.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.