We generalize the construction of Rouquier complexes to the setting of one-sided singular Soergel bimodules. Singular Rouquier complexes are defined by taking minimal complexes of restricted Rouquier complexes. We show that they retain many of the properties of ordinary Rouquier complexes: they are (Formula presented.) -split, they satisfy a vanishing formula, and when Soergel's conjecture holds they are perverse. As an application, we establish Hodge theory for singular Soergel bimodules.

Singular Rouquier complexes

Patimo L.
2022-01-01

Abstract

We generalize the construction of Rouquier complexes to the setting of one-sided singular Soergel bimodules. Singular Rouquier complexes are defined by taking minimal complexes of restricted Rouquier complexes. We show that they retain many of the properties of ordinary Rouquier complexes: they are (Formula presented.) -split, they satisfy a vanishing formula, and when Soergel's conjecture holds they are perverse. As an application, we establish Hodge theory for singular Soergel bimodules.
2022
Patimo, L.
File in questo prodotto:
File Dimensione Formato  
Proceedings of London Math Soc - 2022 - Patimo - Singular Rouquier complexes.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 285.91 kB
Formato Adobe PDF
285.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1238007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact