We study a class of two-dimensional nonlinear Schrödinger equations with point-like singular perturbation and Hartree non-linearity. The point-like singular perturbation of the free Laplacian induces appropriate perturbed Sobolev spaces that are necessary for the study of ground states and evolution flow. We include in our treatment both mass sub-critical and mass critical Hartree non-linearities. Our analysis is two-fold: we establish existence, symmetry, and regularity of ground states, and we demonstrate the well-posedness of the associated Cauchy problem in the singular perturbed energy space. The first goal, unlike other treatments emerging in parallel with the present work, is achieved by a nontrivial adaptation of the standard properties of Schwartz symmetrization for the modified Weinstein functional. This produces, among others, modified Gagliardo-Nirenberg type inequalities that allow to efficiently control the non-linearity and obtain well-posedness by energy methods. The evolution flow is proved to be global in time in the defocusing case, and in the focusing and mass sub-critical case. It is also global in the focusing and mass critical case, for initial data that are suitably small in terms of the best Gagliardo-Nirenberg constant.

Standing waves and global well-posedness for the 2d Hartree equation with a point interaction

Georgiev, Vladimir;
2024-01-01

Abstract

We study a class of two-dimensional nonlinear Schrödinger equations with point-like singular perturbation and Hartree non-linearity. The point-like singular perturbation of the free Laplacian induces appropriate perturbed Sobolev spaces that are necessary for the study of ground states and evolution flow. We include in our treatment both mass sub-critical and mass critical Hartree non-linearities. Our analysis is two-fold: we establish existence, symmetry, and regularity of ground states, and we demonstrate the well-posedness of the associated Cauchy problem in the singular perturbed energy space. The first goal, unlike other treatments emerging in parallel with the present work, is achieved by a nontrivial adaptation of the standard properties of Schwartz symmetrization for the modified Weinstein functional. This produces, among others, modified Gagliardo-Nirenberg type inequalities that allow to efficiently control the non-linearity and obtain well-posedness by energy methods. The evolution flow is proved to be global in time in the defocusing case, and in the focusing and mass sub-critical case. It is also global in the focusing and mass critical case, for initial data that are suitably small in terms of the best Gagliardo-Nirenberg constant.
2024
Georgiev, Vladimir; Michelangeli, Alessandro; Scandone, Raffaele
File in questo prodotto:
File Dimensione Formato  
standingwaves.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2204.05053v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 472.94 kB
Formato Adobe PDF
472.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1238967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact