Quantum physics (QP) education at the secondary school level is still in its infancy. Not only is there ongoing discussion about how to teach this subject, but there is also a lack of coherence in the selection of concepts to be taught, both across countries and over time. To contribute to this discussion, we investigated the perspectives of N = 39 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N= 39$\end{document} high school teachers, university-level physics educators, and physics education researchers regarding the essential concepts in QP and the corresponding illustrations that should be introduced at the secondary school level. We examined the prominence of different key concepts and illustrations, as well as the level of consensus among the various professional groups. Our analysis revealed that certain key concepts are universally valued across all professional groups, while others are specific to particular groups. Additionally, we explored the relationships between these key concepts and their corresponding illustrations. Overall, our study offers valuable insights into the perspectives of different stakeholders, emphasizing the essential concepts and visualizations that should be considered when designing and implementing the teaching of QP at the secondary school level.

The core of secondary level quantum education: a multi-stakeholder perspective

Chiofalo, ML;
2024-01-01

Abstract

Quantum physics (QP) education at the secondary school level is still in its infancy. Not only is there ongoing discussion about how to teach this subject, but there is also a lack of coherence in the selection of concepts to be taught, both across countries and over time. To contribute to this discussion, we investigated the perspectives of N = 39 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N= 39$\end{document} high school teachers, university-level physics educators, and physics education researchers regarding the essential concepts in QP and the corresponding illustrations that should be introduced at the secondary school level. We examined the prominence of different key concepts and illustrations, as well as the level of consensus among the various professional groups. Our analysis revealed that certain key concepts are universally valued across all professional groups, while others are specific to particular groups. Additionally, we explored the relationships between these key concepts and their corresponding illustrations. Overall, our study offers valuable insights into the perspectives of different stakeholders, emphasizing the essential concepts and visualizations that should be considered when designing and implementing the teaching of QP at the secondary school level.
2024
Merzel, A; Bitzenbauer, P; Krijtenburg-Lewerissa, K; Stadermann, K; Andreotti, E; Anttila, D; Bondani, M; Chiofalo, Ml; Faletic, S; Frans, R; Goorney, S; Greinert, F; Jurcic, L; Koupilova, Z; Malgieri, M; Müller, R; Onorato, P; Pospiech, G; Ubben, M; Woitzik, A; Pol, H
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1239247
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact