Word co-occurrence patterns in language corpora contain a surprising amount of conceptual knowledge. Large language models (LLMs), trained to predict words in context, leverage these patterns to achieve impressive performance on diverse semantic tasks requiring world knowledge. An important but understudied question about LLMs’ semantic abilities is whether they acquire generalized knowledge of common events. Here, we test whether five pretrained LLMs (from 2018’s BERT to 2023’s MPT) assign a higher likelihood to plausible descriptions of agent−patient interactions than to minimally different implausible versions of the same event. Using three curated sets of minimal sentence pairs (total n = 1215), we found that pretrained LLMs possess substantial event knowledge, outperforming other distributional language models. In particular, they almost always assign a higher likelihood to possible versus impossible events (The teacher bought the laptop vs. The laptop bought the teacher).

Event Knowledge in Large Language Models: The Gap Between the Impossible and the Unlikely

Alessandro Lenci
;
2023-01-01

Abstract

Word co-occurrence patterns in language corpora contain a surprising amount of conceptual knowledge. Large language models (LLMs), trained to predict words in context, leverage these patterns to achieve impressive performance on diverse semantic tasks requiring world knowledge. An important but understudied question about LLMs’ semantic abilities is whether they acquire generalized knowledge of common events. Here, we test whether five pretrained LLMs (from 2018’s BERT to 2023’s MPT) assign a higher likelihood to plausible descriptions of agent−patient interactions than to minimally different implausible versions of the same event. Using three curated sets of minimal sentence pairs (total n = 1215), we found that pretrained LLMs possess substantial event knowledge, outperforming other distributional language models. In particular, they almost always assign a higher likelihood to possible versus impossible events (The teacher bought the laptop vs. The laptop bought the teacher).
2023
Kauf, Carina; Ivanova, Anna A.; Chersoni, Emmanuele; Selena She, Jingyuan; Chowdhury, Zawad; Fedorenko, Evelina; Lenci, Alessandro; Rambelli, Giulia...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1241207
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 13
social impact