The R package emdi facilitates the estimation of regionally disaggregated indicators using small area estimation methods and provides tools for model building, diagnostics, presenting, and exporting the results. The package version 1.1.7 includes unit-level small area models that rely on access to micro data. The area-level model by Fay and Herriot (1979) and various extensions have been added to the package since the release of version 2.0.0. These extensions include (a) area-level models with back-transformations, (b) spatial and robust extensions, (c) adjusted variance estimation methods, and (d) area-level models that account for measurement errors. Corresponding mean squared error estimators are implemented for assessing the uncertainty. User-friendly tools like a stepwise variable selection, model diagnostics, benchmarking options, high quality maps and results exportation options enable a complete analysis procedure. The functionality of the package is illustrated by examples based on synthetic data for Austrian districts.

A Framework for Producing Small Area Estimates Based on Area-Level Models in R

Salvati N.;Schmid T.
2023-01-01

Abstract

The R package emdi facilitates the estimation of regionally disaggregated indicators using small area estimation methods and provides tools for model building, diagnostics, presenting, and exporting the results. The package version 1.1.7 includes unit-level small area models that rely on access to micro data. The area-level model by Fay and Herriot (1979) and various extensions have been added to the package since the release of version 2.0.0. These extensions include (a) area-level models with back-transformations, (b) spatial and robust extensions, (c) adjusted variance estimation methods, and (d) area-level models that account for measurement errors. Corresponding mean squared error estimators are implemented for assessing the uncertainty. User-friendly tools like a stepwise variable selection, model diagnostics, benchmarking options, high quality maps and results exportation options enable a complete analysis procedure. The functionality of the package is illustrated by examples based on synthetic data for Austrian districts.
2023
Harmening, S.; Kreutzmann, A. -K.; Schmidt, S.; Salvati, N.; Schmid, T.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1242150
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact