The intrinsic laminarity of microfluidic devices impedes the mixing of multiple fluids over short temporal or spatial scales. Despite the existence of several mixers capable of stirring and stretching the flows to promote mixing, most approaches sacrifice temporal or spatial control, portability, or flexibility in terms of operating flow rates. Here, we report a novel method for rapid micromixing based on the generation of cavitation bubbles. By using a portable battery-powered electric circuit, we induce a localized electric spark between two tip electrodes perpendicular to the flow channel that results in several cavitation events. As a result, a vigorous stirring mechanism is induced. We investigate the spatiotemporal dynamics of the spark-generated cavitation bubbles and quantify the created flow disturbance. We demonstrate rapid (in the millisecond timescale) and efficient micromixing (up to 98%) within a length scale of only 200 µm and over a flow rate ranging from 5 to 40 µL/min.
Micromixing with spark-generated cavitation bubbles
Surdo S.Primo
;
2017-01-01
Abstract
The intrinsic laminarity of microfluidic devices impedes the mixing of multiple fluids over short temporal or spatial scales. Despite the existence of several mixers capable of stirring and stretching the flows to promote mixing, most approaches sacrifice temporal or spatial control, portability, or flexibility in terms of operating flow rates. Here, we report a novel method for rapid micromixing based on the generation of cavitation bubbles. By using a portable battery-powered electric circuit, we induce a localized electric spark between two tip electrodes perpendicular to the flow channel that results in several cavitation events. As a result, a vigorous stirring mechanism is induced. We investigate the spatiotemporal dynamics of the spark-generated cavitation bubbles and quantify the created flow disturbance. We demonstrate rapid (in the millisecond timescale) and efficient micromixing (up to 98%) within a length scale of only 200 µm and over a flow rate ranging from 5 to 40 µL/min.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.