The internet of things (IoT) has emerged as a pivotal technological paradigm facilitating interconnected and intelligent devices across multifarious domains. The proliferation of IoT devices has resulted in an unprecedented surge of data, presenting formidable challenges concerning efficient processing, meaningful analysis, and informed decision making. Deep-learning (DL) methodologies, notably convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep-belief networks (DBNs), have demonstrated significant efficacy in mitigating these challenges by furnishing robust tools for learning and extraction of insights from vast and diverse IoT-generated data. This survey article offers a comprehensive and meticulous examination of recent scholarly endeavors encompassing the amalgamation of deep-learning techniques within the IoT landscape. Our scrutiny encompasses an extensive exploration of diverse deep-learning models, expounding on their architectures and applications within IoT domains, including but not limited to smart cities, healthcare informatics, and surveillance applications. We proffer insights into prospective research trajectories, discerning the exigency for innovative solutions that surmount extant limitations and intricacies in deploying deep-learning methodologies effectively within IoT frameworks.

Integration of Deep Learning into the IoT: A Survey of Techniques and Challenges for Real-World Applications

Elhanashi, Abdussalam
Primo
;
Dini, Pierpaolo
Secondo
;
Saponara, Sergio
Ultimo
;
2023-01-01

Abstract

The internet of things (IoT) has emerged as a pivotal technological paradigm facilitating interconnected and intelligent devices across multifarious domains. The proliferation of IoT devices has resulted in an unprecedented surge of data, presenting formidable challenges concerning efficient processing, meaningful analysis, and informed decision making. Deep-learning (DL) methodologies, notably convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep-belief networks (DBNs), have demonstrated significant efficacy in mitigating these challenges by furnishing robust tools for learning and extraction of insights from vast and diverse IoT-generated data. This survey article offers a comprehensive and meticulous examination of recent scholarly endeavors encompassing the amalgamation of deep-learning techniques within the IoT landscape. Our scrutiny encompasses an extensive exploration of diverse deep-learning models, expounding on their architectures and applications within IoT domains, including but not limited to smart cities, healthcare informatics, and surveillance applications. We proffer insights into prospective research trajectories, discerning the exigency for innovative solutions that surmount extant limitations and intricacies in deploying deep-learning methodologies effectively within IoT frameworks.
2023
Elhanashi, Abdussalam; Dini, Pierpaolo; Saponara, Sergio; Zheng, Qinghe
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1242469
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact