In this paper we prove a large deviation principle (LDP) for the empirical measure of a general system of mean -field interacting diffusions with singular drift (as the number of particles tends to infinity) and show convergence to the associated McKean- Vlasov equation. Along the way, we prove an extended version of the Varadhan Integral Lemma for a discontinuous change of measure and subsequently a LDP for Gibbs and Gibbs -like measures with singular potentials.

Large deviations for singularly interacting diffusions

Maurelli, Mario;
2024-01-01

Abstract

In this paper we prove a large deviation principle (LDP) for the empirical measure of a general system of mean -field interacting diffusions with singular drift (as the number of particles tends to infinity) and show convergence to the associated McKean- Vlasov equation. Along the way, we prove an extended version of the Varadhan Integral Lemma for a discontinuous change of measure and subsequently a LDP for Gibbs and Gibbs -like measures with singular potentials.
2024
Hoeksema, Jasper; Holding, Thomas; Maurelli, Mario; Tse, Oliver
File in questo prodotto:
File Dimensione Formato  
HoeHolMauTse2024.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 689.38 kB
Formato Adobe PDF
689.38 kB Adobe PDF Visualizza/Apri
LDPs_for_singularly_interacting_particles_accepted.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 680.41 kB
Formato Adobe PDF
680.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1244128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact