We prove that, instable families of endomorphisms of P-k(C), the measurable holomorphic motion of the Julia sets introduced by Berteloot, Dupont, and the first author is unbranched at almost every point with respect to all measures on the Julia set with strictly positive Lyapunov exponents and not charging the post-critical set. This provides a parallel in this setting to the probabilistic stability of Henon maps by Berger-Dujardin-Lyubich. An analogous result holds in families of polynomial-like maps of large topological degree. In this case, we also give a sufficient condition for the positivity of the Lyapunov exponents of an ergodic measure in terms of its measure-theoretic entropy, generalizing to this setting an analogous result by de Thelin and Dupont valid on P-k(C).

Strong Probabilistic Stability in Holomorphic Families of Endomorphisms of ℙk (ℂ) and Polynomial-Like Maps

Bianchi, Fabrizio;
2024-01-01

Abstract

We prove that, instable families of endomorphisms of P-k(C), the measurable holomorphic motion of the Julia sets introduced by Berteloot, Dupont, and the first author is unbranched at almost every point with respect to all measures on the Julia set with strictly positive Lyapunov exponents and not charging the post-critical set. This provides a parallel in this setting to the probabilistic stability of Henon maps by Berger-Dujardin-Lyubich. An analogous result holds in families of polynomial-like maps of large topological degree. In this case, we also give a sufficient condition for the positivity of the Lyapunov exponents of an ergodic measure in terms of its measure-theoretic entropy, generalizing to this setting an analogous result by de Thelin and Dupont valid on P-k(C).
2024
Bianchi, Fabrizio; Rakhimov, Karim
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1246787
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact