This paper describes the computational challenge developed for a computational competition held in 2023 for the 20 th \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20{\text {th}}$$\end{document} anniversary of the Mixed Integer Programming Workshop. The topic of this competition was reoptimization, also known as warm starting, of mixed integer linear optimization problems after slight changes to the input data for a common formulation. The challenge was to accelerate the proof of optimality of the modified instances by leveraging the information from the solving processes of previously solved instances, all while creating high-quality primal solutions. Specifically, we discuss the competition's format, the creation of public and hidden datasets, and the evaluation criteria. Our goal is to establish a methodology for the generation of benchmark instances and an evaluation framework, along with benchmark datasets, to foster future research on reoptimization of mixed integer linear optimization problems.

The MIP Workshop 2023 Computational Competition on reoptimization

Claudia D'Ambrosio;Dimitri Thomopulos
2024-01-01

Abstract

This paper describes the computational challenge developed for a computational competition held in 2023 for the 20 th \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20{\text {th}}$$\end{document} anniversary of the Mixed Integer Programming Workshop. The topic of this competition was reoptimization, also known as warm starting, of mixed integer linear optimization problems after slight changes to the input data for a common formulation. The challenge was to accelerate the proof of optimality of the modified instances by leveraging the information from the solving processes of previously solved instances, all while creating high-quality primal solutions. Specifically, we discuss the competition's format, the creation of public and hidden datasets, and the evaluation criteria. Our goal is to establish a methodology for the generation of benchmark instances and an evaluation framework, along with benchmark datasets, to foster future research on reoptimization of mixed integer linear optimization problems.
2024
Bolusani, Suresh; Besançon, Mathieu; Gleixner, Ambros; Berthold, Timo; D'Ambrosio, Claudia; Muñoz, Gonzalo; Paat, Joseph; Thomopulos, Dimitri...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1248067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact