We define a quantum loop group U-Q(+) associated to an arbitrary quiver Q = (I, E) and maximal set of deformation parameters, with generators indexed by I x Z and some explicit quadratic and cubic relations. We prove that U-Q(+) is isomorphic to the (generic, small) shuffle algebra associated to the quiver Q and hence, by Negut (Shuffle algebras for quivers and wheel conditions. arXiv:2102.11269), to the localized K-theoretic Hall algebra of Q. For the quiver with one vertex and g loops, this yields a presentation of the spherical Hall algebra of a (generic) smooth projective curve of genus g [invoking the results of Schiffmann and Vasserot (Math Ann 353(4):1399-1451, 2012)]. We extend the above results to the case of non-generic parameters satisfying a certain natural metric condition. As an application, we obtain a description by generators and relations of the subalgebra generated by absolutely cuspidal eigenforms of the Hall algebra of an arbitrary smooth projective curve [(invoking the results of Kapranov et al. (Sel Math (NS) 23(1):117-177, 2017)].

Shuffle algebras for quivers as quantum groups

Francesco Sala;
2024-01-01

Abstract

We define a quantum loop group U-Q(+) associated to an arbitrary quiver Q = (I, E) and maximal set of deformation parameters, with generators indexed by I x Z and some explicit quadratic and cubic relations. We prove that U-Q(+) is isomorphic to the (generic, small) shuffle algebra associated to the quiver Q and hence, by Negut (Shuffle algebras for quivers and wheel conditions. arXiv:2102.11269), to the localized K-theoretic Hall algebra of Q. For the quiver with one vertex and g loops, this yields a presentation of the spherical Hall algebra of a (generic) smooth projective curve of genus g [invoking the results of Schiffmann and Vasserot (Math Ann 353(4):1399-1451, 2012)]. We extend the above results to the case of non-generic parameters satisfying a certain natural metric condition. As an application, we obtain a description by generators and relations of the subalgebra generated by absolutely cuspidal eigenforms of the Hall algebra of an arbitrary smooth projective curve [(invoking the results of Kapranov et al. (Sel Math (NS) 23(1):117-177, 2017)].
2024
Neguţ, Andrei; Sala, Francesco; Schiffmann, Olivier
File in questo prodotto:
File Dimensione Formato  
Negut_SALA_Schiffmann_Shuffle algebras for quivers as quantum groups_Mathematische Annalen_2024.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 618.97 kB
Formato Adobe PDF
618.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Shuffle_and_quantum_v2.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 601.26 kB
Formato Adobe PDF
601.26 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1251807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact