Importance: Meropenem is a widely prescribed β-lactam antibiotic. Meropenem exhibits maximum pharmacodynamic efficacy when given by continuous infusion to deliver constant drug levels above the minimal inhibitory concentration. Compared with intermittent administration, continuous administration of meropenem may improve clinical outcomes. Objective: To determine whether continuous administration of meropenem reduces a composite of mortality and emergence of pandrug-resistant or extensively drug-resistant bacteria compared with intermittent administration in critically ill patients with sepsis. Design, Setting, and Participants: A double-blind, randomized clinical trial enrolling critically ill patients with sepsis or septic shock who had been prescribed meropenem by their treating clinicians at 31 intensive care units of 26 hospitals in 4 countries (Croatia, Italy, Kazakhstan, and Russia). Patients were enrolled between June 5, 2018, and August 9, 2022, and the final 90-day follow-up was completed in November 2022. Interventions: Patients were randomized to receive an equal dose of the antibiotic meropenem by either continuous administration (n = 303) or intermittent administration (n = 304). Main Outcomes and Measures: The primary outcome was a composite of all-cause mortality and emergence of pandrug-resistant or extensively drug-resistant bacteria at day 28. There were 4 secondary outcomes, including days alive and free from antibiotics at day 28, days alive and free from the intensive care unit at day 28, and all-cause mortality at day 90. Seizures, allergic reactions, and mortality were recorded as adverse events. Results: All 607 patients (mean age, 64 [SD, 15] years; 203 were women [33%]) were included in the measurement of the 28-day primary outcome and completed the 90-day mortality follow-up. The majority (369 patients, 61%) had septic shock. The median time from hospital admission to randomization was 9 days (IQR, 3-17 days) and the median duration of meropenem therapy was 11 days (IQR, 6-17 days). Only 1 crossover event was recorded. The primary outcome occurred in 142 patients (47%) in the continuous administration group and in 149 patients (49%) in the intermittent administration group (relative risk, 0.96 [95% CI, 0.81-1.13], P =.60). Of the 4 secondary outcomes, none was statistically significant. No adverse events of seizures or allergic reactions related to the study drug were reported. At 90 days, mortality was 42% both in the continuous administration group (127 of 303 patients) and in the intermittent administration group (127 of 304 patients). Conclusions and Relevance: In critically ill patients with sepsis, compared with intermittent administration, the continuous administration of meropenem did not improve the composite outcome of mortality and emergence of pandrug-resistant or extensively drug-resistant bacteria at day 28. Trial Registration: ClinicalTrials.gov Identifier: NCT03452839.

Continuous vs Intermittent Meropenem Administration in Critically Ill Patients with Sepsis: The MERCY Randomized Clinical Trial

Corradi F.
Investigation
;
Forfori F.;
2023-01-01

Abstract

Importance: Meropenem is a widely prescribed β-lactam antibiotic. Meropenem exhibits maximum pharmacodynamic efficacy when given by continuous infusion to deliver constant drug levels above the minimal inhibitory concentration. Compared with intermittent administration, continuous administration of meropenem may improve clinical outcomes. Objective: To determine whether continuous administration of meropenem reduces a composite of mortality and emergence of pandrug-resistant or extensively drug-resistant bacteria compared with intermittent administration in critically ill patients with sepsis. Design, Setting, and Participants: A double-blind, randomized clinical trial enrolling critically ill patients with sepsis or septic shock who had been prescribed meropenem by their treating clinicians at 31 intensive care units of 26 hospitals in 4 countries (Croatia, Italy, Kazakhstan, and Russia). Patients were enrolled between June 5, 2018, and August 9, 2022, and the final 90-day follow-up was completed in November 2022. Interventions: Patients were randomized to receive an equal dose of the antibiotic meropenem by either continuous administration (n = 303) or intermittent administration (n = 304). Main Outcomes and Measures: The primary outcome was a composite of all-cause mortality and emergence of pandrug-resistant or extensively drug-resistant bacteria at day 28. There were 4 secondary outcomes, including days alive and free from antibiotics at day 28, days alive and free from the intensive care unit at day 28, and all-cause mortality at day 90. Seizures, allergic reactions, and mortality were recorded as adverse events. Results: All 607 patients (mean age, 64 [SD, 15] years; 203 were women [33%]) were included in the measurement of the 28-day primary outcome and completed the 90-day mortality follow-up. The majority (369 patients, 61%) had septic shock. The median time from hospital admission to randomization was 9 days (IQR, 3-17 days) and the median duration of meropenem therapy was 11 days (IQR, 6-17 days). Only 1 crossover event was recorded. The primary outcome occurred in 142 patients (47%) in the continuous administration group and in 149 patients (49%) in the intermittent administration group (relative risk, 0.96 [95% CI, 0.81-1.13], P =.60). Of the 4 secondary outcomes, none was statistically significant. No adverse events of seizures or allergic reactions related to the study drug were reported. At 90 days, mortality was 42% both in the continuous administration group (127 of 303 patients) and in the intermittent administration group (127 of 304 patients). Conclusions and Relevance: In critically ill patients with sepsis, compared with intermittent administration, the continuous administration of meropenem did not improve the composite outcome of mortality and emergence of pandrug-resistant or extensively drug-resistant bacteria at day 28. Trial Registration: ClinicalTrials.gov Identifier: NCT03452839.
2023
Monti, G.; Bradic, N.; Marzaroli, M.; Konkayev, A.; Fominskiy, E.; Kotani, Y.; Likhvantsev, V. V.; Momesso, E.; Nogtev, P.; Lobreglio, R.; Redkin, I.;...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1251967
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 38
social impact