Nowadays, environmental protection has become a topic of primary importance, and the interest in wastewater treatment plants (WWTPs) has increased due to the need for a paradigm shift from linear to circular economy. The centralization level of wastewater infrastructure is the basis for a successful system. The aim of this study was to investigate the environmental impacts generated from the centralized treatment of wastewater in a tourist area in central Italy. The combined use of BioWin 6.2 simulation software and life cycle assessment (LCA) methodology was implemented to evaluate the potential connection of a small decentralized WWTP to a medium-size centralized facility. Two different scenarios (decentralized system, corresponding to the current situation, and centralized) were evaluated in two separate periods: high season (HS), corresponding to the main tourist season, and low season (LS), which is the period before the main tourist season. Two sensitivity analyses were conducted, assuming different N2O emission factors, and considering the period at the end of tourist season, respectively. Although with modest advantages (up to −6 % in pollutant emissions), WWTP connection was the best management option in 10 out of 11 indicators in HS, and 6 out of 11 categories in LS. The study showed that wastewater centralization was promoted by scale factors in HS, as the most impactful consumptions decreased as the degree of centralization increased; on the other hand, the decentralized system was less penalized in LS, as small WWTP was less stressed and energy consuming in this period. Sensitivity analysis confirmed the results obtained. Site-specific conditions can lead to conflicting circumstances, as key parameters may have different behaviors depending on seasonal variations, and the degree of centralization in tourist areas should be addressed by distinguishing separate periods, based on changes in tourist flows and pollution loads.

Centralization of wastewater treatment in a tourist area: A comparative LCA considering the impact of seasonal changes

Pasciucco F.;Pecorini I.;Iannelli R.
2023-01-01

Abstract

Nowadays, environmental protection has become a topic of primary importance, and the interest in wastewater treatment plants (WWTPs) has increased due to the need for a paradigm shift from linear to circular economy. The centralization level of wastewater infrastructure is the basis for a successful system. The aim of this study was to investigate the environmental impacts generated from the centralized treatment of wastewater in a tourist area in central Italy. The combined use of BioWin 6.2 simulation software and life cycle assessment (LCA) methodology was implemented to evaluate the potential connection of a small decentralized WWTP to a medium-size centralized facility. Two different scenarios (decentralized system, corresponding to the current situation, and centralized) were evaluated in two separate periods: high season (HS), corresponding to the main tourist season, and low season (LS), which is the period before the main tourist season. Two sensitivity analyses were conducted, assuming different N2O emission factors, and considering the period at the end of tourist season, respectively. Although with modest advantages (up to −6 % in pollutant emissions), WWTP connection was the best management option in 10 out of 11 indicators in HS, and 6 out of 11 categories in LS. The study showed that wastewater centralization was promoted by scale factors in HS, as the most impactful consumptions decreased as the degree of centralization increased; on the other hand, the decentralized system was less penalized in LS, as small WWTP was less stressed and energy consuming in this period. Sensitivity analysis confirmed the results obtained. Site-specific conditions can lead to conflicting circumstances, as key parameters may have different behaviors depending on seasonal variations, and the degree of centralization in tourist areas should be addressed by distinguishing separate periods, based on changes in tourist flows and pollution loads.
2023
Pasciucco, F.; Pecorini, I.; Iannelli, R.
File in questo prodotto:
File Dimensione Formato  
Centralization of wasteswater treatment.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 3.38 MB
Formato Adobe PDF
3.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1254887
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact