In high-resolution Earth observation imagery, Low Earth Orbit (LEO) satellites capture and transmit images to ground to create an updated map of an area of interest. Such maps provide valuable information for meteorology and environmental monitoring, but can also be employed for real-Time disaster detection and management. However, the amount of data generated by these applications can easily exceed the communication capabilities of LEO satellites, leading to congestion and packet dropping. To avoid these problems, the Inter-Satellite Links (ISLs) can be used to distribute the data among multiple satellites and speed up processing. In this paper, we formulate a satellite mobile edge computing (SMEC) framework for real-Time and very-high resolution Earth observation and optimize the image distribution and compression parameters to minimize energy consumption. Our results show that our approach increases the amount of images that the system can support by a factor of 12× and 2× when compared to directly downloading the data and to local SMEC, respectively. Furthermore, energy consumption was reduced by 11% in a real-life scenario of imaging a volcanic island, while a sensitivity analysis of the image acquisition process demonstrates that energy consumption can be reduced by up to 90%.
Satellite Edge Computing for Real-Time and Very-High Resolution Earth Observation
Moretti M.;
2023-01-01
Abstract
In high-resolution Earth observation imagery, Low Earth Orbit (LEO) satellites capture and transmit images to ground to create an updated map of an area of interest. Such maps provide valuable information for meteorology and environmental monitoring, but can also be employed for real-Time disaster detection and management. However, the amount of data generated by these applications can easily exceed the communication capabilities of LEO satellites, leading to congestion and packet dropping. To avoid these problems, the Inter-Satellite Links (ISLs) can be used to distribute the data among multiple satellites and speed up processing. In this paper, we formulate a satellite mobile edge computing (SMEC) framework for real-Time and very-high resolution Earth observation and optimize the image distribution and compression parameters to minimize energy consumption. Our results show that our approach increases the amount of images that the system can support by a factor of 12× and 2× when compared to directly downloading the data and to local SMEC, respectively. Furthermore, energy consumption was reduced by 11% in a real-life scenario of imaging a volcanic island, while a sensitivity analysis of the image acquisition process demonstrates that energy consumption can be reduced by up to 90%.File | Dimensione | Formato | |
---|---|---|---|
SATNEX_V_distributed_edge.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.04 MB
Formato
Adobe PDF
|
2.04 MB | Adobe PDF | Visualizza/Apri |
Satellite_Edge_Computing_for_Real-Time_and_Very-High_Resolution_Earth_Observation1.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.