Seagrass wrack plays multiple ecological roles in coastal habitats but is often removed from beaches and used for economical processing, neglecting its potential role in sustaining dune plant establishment under changing climate scenarios. Rainwater shortage is a major stress for seedlings and reduced precipitations are expected in some coastal areas. We investigated in mesocosm how wrack influenced seedling performance of Cakile maritima, Thinopyrum junceum, and Calamagrostis arenaria under current and reduced precipitation. We also assessed wrack water holding capacity and leachate chemical/physical properties. Wrack stimulated seedling growth while reduced precipitation decreased root development. Wrack mitigated the effects of reduced precipitation on T. junceum and C. arenaria biomass. Wrack retained water up to five-fold its weight, increased water pH, conductivity, and nutrient content. Wrack promotes dune colonization by vegetation even under rainwater shortage. Thus, the maintenance of this natural resource on beaches is critical for improving dune resilience against climate changes.

Beach-cast seagrass wrack: A natural marine resource improving the establishment of dune plant communities under a changing climate

Balestri E.
;
Fulignati S.;Raspolli Galletti A. M.;Lardicci C.
Ultimo
2024-01-01

Abstract

Seagrass wrack plays multiple ecological roles in coastal habitats but is often removed from beaches and used for economical processing, neglecting its potential role in sustaining dune plant establishment under changing climate scenarios. Rainwater shortage is a major stress for seedlings and reduced precipitations are expected in some coastal areas. We investigated in mesocosm how wrack influenced seedling performance of Cakile maritima, Thinopyrum junceum, and Calamagrostis arenaria under current and reduced precipitation. We also assessed wrack water holding capacity and leachate chemical/physical properties. Wrack stimulated seedling growth while reduced precipitation decreased root development. Wrack mitigated the effects of reduced precipitation on T. junceum and C. arenaria biomass. Wrack retained water up to five-fold its weight, increased water pH, conductivity, and nutrient content. Wrack promotes dune colonization by vegetation even under rainwater shortage. Thus, the maintenance of this natural resource on beaches is critical for improving dune resilience against climate changes.
2024
Menicagli, V.; Balestri, E.; Bernardini, G.; Barsotti, F.; Fulignati, S.; Raspolli Galletti, A. M.; Lardicci, C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1257567
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact