The Electric Solar Wind Sail (E-sail) is a propellantless propulsion system that converts solar wind dynamic pressure into a deep-space thrust through a grid of long conducting tethers. The first flight test, needed to experience the true potential of the E-sail concept, is likely to be carried out using a single spinning cable deployed from a small satellite, such as a CubeSat. This specific configuration poses severe limitations to both the performance and the maneuverability of the spacecraft used to analyze the actual in situ thruster capabilities. In fact, the direction of the spin axis in a single-tether configuration can be considered fixed in an inertial reference frame, so that the classic sail pitch angle is no longer a control variable during the interplanetary flight. This paper aims to determine the polar form of the propelled trajectory and the characteristics of the osculating orbit of a spacecraft propelled by a low-performance spinning E-sail with an inertially fixed axis of rotation. Assuming that the spacecraft starts the trajectory from a parking orbit that coincides with the Earth's heliocentric orbit and that its spin axis belongs to the plane of the ecliptic, a procedure is illustrated to solve the problem accurately with a set of simple analytical relations.

Trajectory Approximation of a Low-Performance E-Sail with Fixed Orientation

Quarta, Alessandro A.
Primo
Conceptualization
;
Mengali, Giovanni
Secondo
Writing – Original Draft Preparation
2024-01-01

Abstract

The Electric Solar Wind Sail (E-sail) is a propellantless propulsion system that converts solar wind dynamic pressure into a deep-space thrust through a grid of long conducting tethers. The first flight test, needed to experience the true potential of the E-sail concept, is likely to be carried out using a single spinning cable deployed from a small satellite, such as a CubeSat. This specific configuration poses severe limitations to both the performance and the maneuverability of the spacecraft used to analyze the actual in situ thruster capabilities. In fact, the direction of the spin axis in a single-tether configuration can be considered fixed in an inertial reference frame, so that the classic sail pitch angle is no longer a control variable during the interplanetary flight. This paper aims to determine the polar form of the propelled trajectory and the characteristics of the osculating orbit of a spacecraft propelled by a low-performance spinning E-sail with an inertially fixed axis of rotation. Assuming that the spacecraft starts the trajectory from a parking orbit that coincides with the Earth's heliocentric orbit and that its spin axis belongs to the plane of the ecliptic, a procedure is illustrated to solve the problem accurately with a set of simple analytical relations.
2024
Quarta, Alessandro A.; Mengali, Giovanni
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1258228
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact