Stroke, a life-threatening medical condition, necessitates immediate intervention for optimal outcomes. Timely diagnosis and treatment play a crucial role in reducing mortality and minimizing long-term disabilities associated with strokes. This study presents a novel approach to meet these critical needs by proposing a real-time stroke detection system based on deep learning (DL) with utilization of federated learning (FL) to enhance accuracy and privacy preservation. The primary objective of this research is to develop an efficient and accurate model capable of discerning between stroke and non-stroke cases in real-time, facilitating healthcare professionals in making well-informed decisions. Traditional stroke detection methods relying on manual interpretation of medical images are time-consuming and prone to human error. DL techniques have shown promise in automating this process, yet challenges persist due to the need for extensive and diverse datasets and privacy concerns. To address these challenges, our methodology involves utilization and assessing YOLOv8 models on comprehensive datasets comprising both stroke and non-stroke based on the facial paralysis of the individuals from the images. This training process empowers the model to grasp intricate patterns and features associated with strokes, thereby enhancing its diagnostic accuracy. In addition, federated learning, a decentralized training approach, is employed to bolster privacy while preserving model performance. This approach enables the model to learn from data distributed across various clients without compromising sensitive patient information. The proposed methodology has been implemented on NVIDIA platforms, utilizing their advanced GPU capabilities to enable real-time processing and analysis. This optimized model has the potential to revolutionize stroke diagnosis and patient care, promising to save lives and elevate the quality of healthcare services in the neurology field.

TeleStroke: real-time stroke detection with federated learning and YOLOv8 on edge devices

Elhanashi A.
Primo
;
Dini P.
Secondo
;
Saponara S.;Zheng Q.
2024-01-01

Abstract

Stroke, a life-threatening medical condition, necessitates immediate intervention for optimal outcomes. Timely diagnosis and treatment play a crucial role in reducing mortality and minimizing long-term disabilities associated with strokes. This study presents a novel approach to meet these critical needs by proposing a real-time stroke detection system based on deep learning (DL) with utilization of federated learning (FL) to enhance accuracy and privacy preservation. The primary objective of this research is to develop an efficient and accurate model capable of discerning between stroke and non-stroke cases in real-time, facilitating healthcare professionals in making well-informed decisions. Traditional stroke detection methods relying on manual interpretation of medical images are time-consuming and prone to human error. DL techniques have shown promise in automating this process, yet challenges persist due to the need for extensive and diverse datasets and privacy concerns. To address these challenges, our methodology involves utilization and assessing YOLOv8 models on comprehensive datasets comprising both stroke and non-stroke based on the facial paralysis of the individuals from the images. This training process empowers the model to grasp intricate patterns and features associated with strokes, thereby enhancing its diagnostic accuracy. In addition, federated learning, a decentralized training approach, is employed to bolster privacy while preserving model performance. This approach enables the model to learn from data distributed across various clients without compromising sensitive patient information. The proposed methodology has been implemented on NVIDIA platforms, utilizing their advanced GPU capabilities to enable real-time processing and analysis. This optimized model has the potential to revolutionize stroke diagnosis and patient care, promising to save lives and elevate the quality of healthcare services in the neurology field.
2024
Elhanashi, A.; Dini, P.; Saponara, S.; Zheng, Q.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1259887
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact