We study the monoid of global invariant types modulo domination-equivalence in the context of o-minimal theories. We reduce its computation to the problem of proving that it is generated by classes of 1-types. We show this to hold in Real Closed Fields, where generators of this monoid correspond to invariant convex subrings of the monster model. Combined with [C. Ealy, D. Haskell and J. Marikova, Residue field domination in real closed valued fields, Notre Dame J. Formal Logic 60(3) (2019) 333-351], this allows us to compute the domination monoid in the weakly o-minimal theory of Real Closed Valued Fields.
The domination monoid in o-minimal theories
Mennuni, Rosario
2022-01-01
Abstract
We study the monoid of global invariant types modulo domination-equivalence in the context of o-minimal theories. We reduce its computation to the problem of proving that it is generated by classes of 1-types. We show this to hold in Real Closed Fields, where generators of this monoid correspond to invariant convex subrings of the monster model. Combined with [C. Ealy, D. Haskell and J. Marikova, Residue field domination in real closed valued fields, Notre Dame J. Formal Logic 60(3) (2019) 333-351], this allows us to compute the domination monoid in the weakly o-minimal theory of Real Closed Valued Fields.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
mennuni-2021-the-domination-monoid-in-o-minimal-theories.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
433.27 kB
Formato
Adobe PDF
|
433.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2008.01770v1.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
923.89 kB
Formato
Adobe PDF
|
923.89 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.