Abstract Adverse health effects of particulate matter <10 microm in aerodynamic diameter (PM(10)) and high temperatures are well known, but the extent of their interaction on mortality is less clear. This paper describes effect modification of temperature in the PM(10)-mortality association and tests the hypothesis that higher PM(10) effects in summer are due to enhanced exposure to particles. All deaths of residents of nine Italian cities between 1997 and 2004 were selected. The case-crossover approach was adopted to estimate the effect of PM(10) on mortality by season and temperature level. Three strata of temperature corresponding to low, medium, and high "ventilation" were identified, and the interaction between PM(10) and temperature within each stratum was examined. Season and temperature levels strongly modified the PM(10)-mortality association: for a 10-microg/m(3) variation in PM(10), a 2.54% increase in risk of death in summer (95% confidence interval: 1.31, 3.78) compared with 0.20% (95% confidence interval: -0.08, 0.49) in winter. Analysis of the interaction between PM(10) and temperature within temperature strata resulted in positive but, in most cases, nonstatistically significant coefficients. The authors found much higher PM(10) effects on mortality during warmer days. The hypothesis that such an effect is attributable to enhanced exposure to particles in summer could not be rejected.

Does temperature modify the association between air pollution and mortality? A multicity case-crossover analysis in Italy

VIGOTTI, MARIA ANGELA;
2008-01-01

Abstract

Abstract Adverse health effects of particulate matter <10 microm in aerodynamic diameter (PM(10)) and high temperatures are well known, but the extent of their interaction on mortality is less clear. This paper describes effect modification of temperature in the PM(10)-mortality association and tests the hypothesis that higher PM(10) effects in summer are due to enhanced exposure to particles. All deaths of residents of nine Italian cities between 1997 and 2004 were selected. The case-crossover approach was adopted to estimate the effect of PM(10) on mortality by season and temperature level. Three strata of temperature corresponding to low, medium, and high "ventilation" were identified, and the interaction between PM(10) and temperature within each stratum was examined. Season and temperature levels strongly modified the PM(10)-mortality association: for a 10-microg/m(3) variation in PM(10), a 2.54% increase in risk of death in summer (95% confidence interval: 1.31, 3.78) compared with 0.20% (95% confidence interval: -0.08, 0.49) in winter. Analysis of the interaction between PM(10) and temperature within temperature strata resulted in positive but, in most cases, nonstatistically significant coefficients. The authors found much higher PM(10) effects on mortality during warmer days. The hypothesis that such an effect is attributable to enhanced exposure to particles in summer could not be rejected.
2008
Stafoggia, M; Schwartz, J; Forastiere, F; Perucci, Ca; SISTI GROUP AGOSTINI, D; DE LISIO, S; Miglio, R; Pandolfi, P; Scarnato, C; Simonato, L; Tessari, R; Bisanti, L; Rognoni, M; Russo, A; Cernigliaro, A; Scondotto, S; Vigotti, MARIA ANGELA; Belleudi, V; De'Donato, F; Michelozzi, P; Picciotto, S; Primerano, R; Serinelli, M; Berti, G; Cadum, E; Caranci, N; Chiusolo, M; Demaria, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/126251
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact