Probabilistic characterizations of possible future eruptive scenarios at Vesuvius volcano are elaborated and organized within a risk-based framework. In the EXPLORIS project, a wide variety of topics relating to this basic problem have been pursued: updates of historical data, reinterpretation of previous geological field data and the collection of new fieldwork results, the development of novel numerical modelling codes and of risk assessment techniques have all been completed. To achieve coherence, many diverse strands of evidence had to be unified within a formalised structure, and linked together by expert knowledge. For this purpose, a Vesuvius ‘Event Tree’ (ET) was created to summarise in a numerical-graphical form, at different levels of detail, all the relative likelihoods relating to the genesis and style of eruption, development and nature of volcanic hazards, and the probabilities of occurrence of different volcanic risks in the next eruption crisis. The Event Tree formulation provides a logical pathway connecting generic probabilistic hazard assessment to quantitative risk evaluation. In order to achieve a complete parameterization for this all-inclusive approach, exhaustive hazard and risk models were needed, quantified with comprehensive uncertainty distributions for all factors involved, rather than simple ‘best-estimate’ or nominal values. Thus, a structured expert elicitation procedure was implemented to complement more traditional data analysis and interpretative approaches. The structure of the Vesuvius Event Tree is presented, and some of the data analysis findings and elicitation outcomes that have provided initial indicative probability distributions to be associated with each of its branches are summarized. The Event Tree extends from initiating volcanic eruption events and hazards right through to human impact and infrastructure consequences, with the complete tree and its parameterisation forming a quantitative synoptic framework for comprehensive hazard evaluation and mapping of risk impacts. The organization of the Event Tree allows easy updating, as and when new information becomes available.

Developing an Event Tree for Probabilistic Hazard and Risk Assessment at Vesuvius, J. Volcanol. Geoth. Research,

ROSI, MAURO;SANTACROCE, ROBERTO;
2008-01-01

Abstract

Probabilistic characterizations of possible future eruptive scenarios at Vesuvius volcano are elaborated and organized within a risk-based framework. In the EXPLORIS project, a wide variety of topics relating to this basic problem have been pursued: updates of historical data, reinterpretation of previous geological field data and the collection of new fieldwork results, the development of novel numerical modelling codes and of risk assessment techniques have all been completed. To achieve coherence, many diverse strands of evidence had to be unified within a formalised structure, and linked together by expert knowledge. For this purpose, a Vesuvius ‘Event Tree’ (ET) was created to summarise in a numerical-graphical form, at different levels of detail, all the relative likelihoods relating to the genesis and style of eruption, development and nature of volcanic hazards, and the probabilities of occurrence of different volcanic risks in the next eruption crisis. The Event Tree formulation provides a logical pathway connecting generic probabilistic hazard assessment to quantitative risk evaluation. In order to achieve a complete parameterization for this all-inclusive approach, exhaustive hazard and risk models were needed, quantified with comprehensive uncertainty distributions for all factors involved, rather than simple ‘best-estimate’ or nominal values. Thus, a structured expert elicitation procedure was implemented to complement more traditional data analysis and interpretative approaches. The structure of the Vesuvius Event Tree is presented, and some of the data analysis findings and elicitation outcomes that have provided initial indicative probability distributions to be associated with each of its branches are summarized. The Event Tree extends from initiating volcanic eruption events and hazards right through to human impact and infrastructure consequences, with the complete tree and its parameterisation forming a quantitative synoptic framework for comprehensive hazard evaluation and mapping of risk impacts. The organization of the Event Tree allows easy updating, as and when new information becomes available.
2008
Neri, A; Aspinall, W. P.; Cioni, R; Bertagnini, A; Baxter, P. J.; Zuccaro, G; Andronico, D; Barsotti, S; ESPOSTI ONGARO, T; Hincks, T. K.; Macedonio, G; Papale, P; Rosi, Mauro; Santacroce, Roberto; Woo, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/126260
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact