Given a stochastic matrix P partitioned in four blocks Pij, i,j=1,2, Kemeny's constant κ(P) is expressed in terms of Kemeny's constants of the stochastic complements P1=P11+P12(I−P22)−1P21, and P2=P22+P21(I−P11)−1P12. Specific cases concerning periodic Markov chains and Kronecker products of stochastic matrices are investigated. Bounds to Kemeny's constant of perturbed matrices are given. Relying on these theoretical results, a divide-and-conquer algorithm for the efficient computation of Kemeny's constant of graphs is designed. Numerical experiments performed on real world problems show the high efficiency and reliability of this algorithm.

On Kemeny's constant and stochastic complement

Bini Dario Andrea.;Durastante F.
;
Kim Sooyeong;Meini Beatrice
2024-01-01

Abstract

Given a stochastic matrix P partitioned in four blocks Pij, i,j=1,2, Kemeny's constant κ(P) is expressed in terms of Kemeny's constants of the stochastic complements P1=P11+P12(I−P22)−1P21, and P2=P22+P21(I−P11)−1P12. Specific cases concerning periodic Markov chains and Kronecker products of stochastic matrices are investigated. Bounds to Kemeny's constant of perturbed matrices are given. Relying on these theoretical results, a divide-and-conquer algorithm for the efficient computation of Kemeny's constant of graphs is designed. Numerical experiments performed on real world problems show the high efficiency and reliability of this algorithm.
2024
Bini Dario, Andrea.; Durastante, F.; Kim, Sooyeong; Meini, Beatrice
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1262687
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact