Organogenesis occurs in the uterus under low oxygen levels (4%). Preterm birth exposes immature newborns to a hyperoxic environment, which can induce a massive production of reactive oxygen species and potentially affect organ development, leading to diseases such as necrotizing enterocolitis. The β3-adrenoreceptor (β3-AR) has an oxygen-dependent regulatory mechanism, and its activation exerts an antioxidant effect. To test the hypothesis that β3-AR could protect postnatal ileal development from the negative impact of high oxygen levels, Sprague–Dawley rat pups were raised under normoxia (21%) or hyperoxia (85%) for the first 2 weeks after birth and treated or not with BRL37344, a selective β3-AR agonist, at 1, 3, or 6 mg/kg. Hyperoxia alters ileal mucosal morphology, leading to increased cell lipid oxidation byproducts, reduced presence of β3-AR-positive resident cells, decreased junctional protein expression, disrupted brush border, mucin over-production, and impaired vascularization. Treatment with 3 mg/kg of BRL37344 prevented these alterations, although not completely, while the lower 1 mg/kg dose was ineffective, and the higher 6 mg/kg dose was toxic. Our findings indicate the potential of β3-AR agonism as a new therapeutic approach to counteract the hyperoxia-induced ileal alterations and, more generally, the disorders of prematurity related to supra-physiologic oxygen exposure.
Protective Effects of Beta-3 Adrenoceptor Agonism on Mucosal Integrity in Hyperoxia-Induced Ileal Alterations
Biagini D.;Filippi L.;
2024-01-01
Abstract
Organogenesis occurs in the uterus under low oxygen levels (4%). Preterm birth exposes immature newborns to a hyperoxic environment, which can induce a massive production of reactive oxygen species and potentially affect organ development, leading to diseases such as necrotizing enterocolitis. The β3-adrenoreceptor (β3-AR) has an oxygen-dependent regulatory mechanism, and its activation exerts an antioxidant effect. To test the hypothesis that β3-AR could protect postnatal ileal development from the negative impact of high oxygen levels, Sprague–Dawley rat pups were raised under normoxia (21%) or hyperoxia (85%) for the first 2 weeks after birth and treated or not with BRL37344, a selective β3-AR agonist, at 1, 3, or 6 mg/kg. Hyperoxia alters ileal mucosal morphology, leading to increased cell lipid oxidation byproducts, reduced presence of β3-AR-positive resident cells, decreased junctional protein expression, disrupted brush border, mucin over-production, and impaired vascularization. Treatment with 3 mg/kg of BRL37344 prevented these alterations, although not completely, while the lower 1 mg/kg dose was ineffective, and the higher 6 mg/kg dose was toxic. Our findings indicate the potential of β3-AR agonism as a new therapeutic approach to counteract the hyperoxia-induced ileal alterations and, more generally, the disorders of prematurity related to supra-physiologic oxygen exposure.File | Dimensione | Formato | |
---|---|---|---|
2024-Antioxidants-ILEUM.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
18.71 MB
Formato
Adobe PDF
|
18.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.