We propose a technique for the analysis of infinite-state graph transformation systems, based on the construction of finite structures approximating their behaviour. Following a classical approach, one can construct a chain of finite under-approximations (k-truncations) of the Winskel style unfolding of a graph grammar. More interestingly, also a chain of finite over-approximations (k-coverings) of the unfolding can be constructed. The fact that k-truncations and k-coverings approximate the unfolding with arbitrary accuracy is formalised by showing that both chains converge (in a categorical sense) to the full unfolding. We discuss how the finite over- and under-approximations can be used to check properties of systems modelled by graph transformation systems, illustrating this with some small examples. We also describe the Augur tool, which provides a partial implementation of the proposed constructions, and has been used for the verification of larger case studies.

A Framework for the Verification of Infinite-State Graph Transformation Systems

CORRADINI, ANDREA;
2008

Abstract

We propose a technique for the analysis of infinite-state graph transformation systems, based on the construction of finite structures approximating their behaviour. Following a classical approach, one can construct a chain of finite under-approximations (k-truncations) of the Winskel style unfolding of a graph grammar. More interestingly, also a chain of finite over-approximations (k-coverings) of the unfolding can be constructed. The fact that k-truncations and k-coverings approximate the unfolding with arbitrary accuracy is formalised by showing that both chains converge (in a categorical sense) to the full unfolding. We discuss how the finite over- and under-approximations can be used to check properties of systems modelled by graph transformation systems, illustrating this with some small examples. We also describe the Augur tool, which provides a partial implementation of the proposed constructions, and has been used for the verification of larger case studies.
Baldan, Paolo; Corradini, Andrea; Koenig, Barbara
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/126285
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 29
social impact