Consider a real-valued Morse function f on a C^2 closed connected n-dimensional manifold M. It is proved that a suitable Riemannian metric exists on M, such that f is harmonic outside the set of critical points off of index 0 and n. The proof is based on a result of Calabi [1], providing a criterion for a closed one-form on a closed connected manifold to be harmonic with respect to some Riemannian metric.

Intrinsic harmonicity of morse functions

Frosini P.;
2003-01-01

Abstract

Consider a real-valued Morse function f on a C^2 closed connected n-dimensional manifold M. It is proved that a suitable Riemannian metric exists on M, such that f is harmonic outside the set of critical points off of index 0 and n. The proof is based on a result of Calabi [1], providing a criterion for a closed one-form on a closed connected manifold to be harmonic with respect to some Riemannian metric.
2003
Frosini, P.; Landi, C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1264204
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact