In this paper we exploit the concept of extended Pareto grid to study the geometric properties of the matching distance for R^2-valued regular functions defined on a closed Riemannian manifold. In particular, we prove that in this case the matching distance is realised either at special values or at values corresponding to vertical, horizontal or slope 1 lines.

Geometry of the matching distance for 2D filtering functions

Frosini P.;
2023-01-01

Abstract

In this paper we exploit the concept of extended Pareto grid to study the geometric properties of the matching distance for R^2-valued regular functions defined on a closed Riemannian manifold. In particular, we prove that in this case the matching distance is realised either at special values or at values corresponding to vertical, horizontal or slope 1 lines.
2023
Ethier, M.; Frosini, P.; Quercioli, N.; Tombari, F.
File in questo prodotto:
File Dimensione Formato  
s41468-023-00128-7 (4).pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 800.43 kB
Formato Adobe PDF
800.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1264205
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact