In this paper we exploit the concept of extended Pareto grid to study the geometric properties of the matching distance for R^2-valued regular functions defined on a closed Riemannian manifold. In particular, we prove that in this case the matching distance is realised either at special values or at values corresponding to vertical, horizontal or slope 1 lines.
Geometry of the matching distance for 2D filtering functions
Frosini P.;
2023-01-01
Abstract
In this paper we exploit the concept of extended Pareto grid to study the geometric properties of the matching distance for R^2-valued regular functions defined on a closed Riemannian manifold. In particular, we prove that in this case the matching distance is realised either at special values or at values corresponding to vertical, horizontal or slope 1 lines.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s41468-023-00128-7 (4).pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
800.43 kB
Formato
Adobe PDF
|
800.43 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.