VC-dimension is an index of the capacity of a learning machine. It has been computed in several cases, but always in a Euclidean context. This paper extends the notion to classifiers acting in the more general environment of a manifold. General properties are proved, and some examples of simple classifiers on elementary manifolds are given. A large part of the research is directed towards a still open problem on product manifolds.

VC-dimension on manifolds: A first approach

FROSINI, PATRIZIO
2008-01-01

Abstract

VC-dimension is an index of the capacity of a learning machine. It has been computed in several cases, but always in a Euclidean context. This paper extends the notion to classifiers acting in the more general environment of a manifold. General properties are proved, and some examples of simple classifiers on elementary manifolds are given. A large part of the research is directed towards a still open problem on product manifolds.
2008
Ferri, Massimo; Frosini, Patrizio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1264228
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact