In Persistent Homology and Topology, filtrations are usually given by introducing an ordered collection of sets or a continuous function from a topological space to R^n. A natural question arises, whether these approaches are equivalent or not. In this paper we study this problem and prove that, while the answer to the previous question is negative in the general case, the approach by continuous functions is not restrictive with respect to the other, provided that some natural stability and completeness assumptions are made. In particular, we show that every compact and stable 1-dimensional filtration of a compact metric space is induced by a continuous function. Moreover, we extend the previous result to the case of multi-dimensional filtrations, requiring that our filtration is also complete. Three examples show that we cannot drop the assumptions about stability and completeness. Consequences of our results on the definition of a distance between filtrations are finally discussed.

Filtrations induced by continuous functions

FROSINI, PATRIZIO
2013-01-01

Abstract

In Persistent Homology and Topology, filtrations are usually given by introducing an ordered collection of sets or a continuous function from a topological space to R^n. A natural question arises, whether these approaches are equivalent or not. In this paper we study this problem and prove that, while the answer to the previous question is negative in the general case, the approach by continuous functions is not restrictive with respect to the other, provided that some natural stability and completeness assumptions are made. In particular, we show that every compact and stable 1-dimensional filtration of a compact metric space is induced by a continuous function. Moreover, we extend the previous result to the case of multi-dimensional filtrations, requiring that our filtration is also complete. Three examples show that we cannot drop the assumptions about stability and completeness. Consequences of our results on the definition of a distance between filtrations are finally discussed.
2013
DI FABIO, Barbara; Frosini, Patrizio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1264254
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact