We study the properties of the asymptotic Maslov index of invariant measures for time-periodic Hamiltonian systems on the cotangent bundle of a compact manifold M. We show that if M has finite fundamental group and the Hamiltonian satisfies some general growth assumptions on the mo- menta, then the asymptotic Maslov indices of periodic orbits are dense in the half line [0, +∞). Furthermore, if the Hamiltonian is the Fenchel dual of an electromagnetic Lagrangian, then every non-negative number r is the limit of the asymptotic Maslov indices of a sequence of periodic orbits which converges narrowly to an invariant measure with asymptotic Maslov index r. We discuss the existence of minimal ergodic invariant measures with prescribed asymp- totic Maslov index by the analogue of Mather’s theory of the beta function, the asymptotic Maslov index playing the role of the rotation vector.

Invariant measures of Hamiltonian systems with prescribed asymptotic Maslov index

ABBONDANDOLO, ALBERTO;
2008-01-01

Abstract

We study the properties of the asymptotic Maslov index of invariant measures for time-periodic Hamiltonian systems on the cotangent bundle of a compact manifold M. We show that if M has finite fundamental group and the Hamiltonian satisfies some general growth assumptions on the mo- menta, then the asymptotic Maslov indices of periodic orbits are dense in the half line [0, +∞). Furthermore, if the Hamiltonian is the Fenchel dual of an electromagnetic Lagrangian, then every non-negative number r is the limit of the asymptotic Maslov indices of a sequence of periodic orbits which converges narrowly to an invariant measure with asymptotic Maslov index r. We discuss the existence of minimal ergodic invariant measures with prescribed asymp- totic Maslov index by the analogue of Mather’s theory of the beta function, the asymptotic Maslov index playing the role of the rotation vector.
2008
Abbondandolo, Alberto; A., Figalli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/126486
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact