Ionic liquids (ILs) represent promising working fluids to be used in thermal energy storage (TES) technologies thanks to their peculiar properties, such as low volatility, high chemical stability, and high heat capacity. Here, we studied the thermal stability of the IL N-butyl-N-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate ([BmPyrr]FAP), a potential working fluid for TES applications. The IL was heated at 200 degrees C for up to 168 h either in the absence or in contact with steel, copper, and brass plates to simulate the conditions used in TES plants. High-resolution magic angle spinning nuclear magnetic resonance spectroscopy was found to be useful for the identification of the degradation products of both the cation and the anion, thanks to the acquisition of H-1, C-13, P-31, and F-19-based experiments. In addition, elemental analysis was performed on the thermally degraded samples by inductively coupled plasma optical emission spectroscopy and energy dispersive X-ray spectroscopy. Our analysis shows a significant degradation of the FAP anion upon heating for more than 4 h, even in the absence of the metal/alloy plates; on the other hand, the [BmPyrr] cation displays a remarkable stability also when heated in contact with steel and brass.

Ionic Liquids as Working Fluids for Heat Storage Applications: Decomposition Behavior of N-Butyl-N-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate

Francesca Nardelli;
2023-01-01

Abstract

Ionic liquids (ILs) represent promising working fluids to be used in thermal energy storage (TES) technologies thanks to their peculiar properties, such as low volatility, high chemical stability, and high heat capacity. Here, we studied the thermal stability of the IL N-butyl-N-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate ([BmPyrr]FAP), a potential working fluid for TES applications. The IL was heated at 200 degrees C for up to 168 h either in the absence or in contact with steel, copper, and brass plates to simulate the conditions used in TES plants. High-resolution magic angle spinning nuclear magnetic resonance spectroscopy was found to be useful for the identification of the degradation products of both the cation and the anion, thanks to the acquisition of H-1, C-13, P-31, and F-19-based experiments. In addition, elemental analysis was performed on the thermally degraded samples by inductively coupled plasma optical emission spectroscopy and energy dispersive X-ray spectroscopy. Our analysis shows a significant degradation of the FAP anion upon heating for more than 4 h, even in the absence of the metal/alloy plates; on the other hand, the [BmPyrr] cation displays a remarkable stability also when heated in contact with steel and brass.
2023
Nardelli, Francesca; Berretti, Enrico; Lavacchi, Alessandro; Pitzalis, Emanuela; Freni, Angelo; Pizzanelli, Silvia
File in questo prodotto:
File Dimensione Formato  
18-materials-2023.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.47 MB
Formato Adobe PDF
2.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1267127
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact