A main drawback of eXplainable Artificial Intelligence (XAI) approaches is the feature independence assumption, hindering the study of potential variable dependencies. This leads to approximating black box behaviors by analyzing the effects on randomly generated feature values that may rarely occur in the original samples. This paper addresses this issue by integrating causal knowledge in an XAI method to enhance transparency and enable users to assess the quality of the generated explanations. Specifically, we propose a novel extension to a widely used local and model-agnostic explainer, which encodes explicit causal relationships within the data surrounding the instance being explained. Extensive experiments show that our approach overcomes the original method in terms of faithfully replicating the black-box model's mechanism and the consistency and reliability of the generated explanations.

Causality-Aware Local Interpretable Model-Agnostic Explanations

Cinquini, Martina;Guidotti, Riccardo
2024-01-01

Abstract

A main drawback of eXplainable Artificial Intelligence (XAI) approaches is the feature independence assumption, hindering the study of potential variable dependencies. This leads to approximating black box behaviors by analyzing the effects on randomly generated feature values that may rarely occur in the original samples. This paper addresses this issue by integrating causal knowledge in an XAI method to enhance transparency and enable users to assess the quality of the generated explanations. Specifically, we propose a novel extension to a widely used local and model-agnostic explainer, which encodes explicit causal relationships within the data surrounding the instance being explained. Extensive experiments show that our approach overcomes the original method in terms of faithfully replicating the black-box model's mechanism and the consistency and reliability of the generated explanations.
2024
9783031637995
9783031638008
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1267831
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact