Hydrogen mobility embodies a promising solution to address the challenges posed by traditional fossil fuel-based vehicles. The use of hydrogen in small heavy-duty road vehicles based on internal combustion engines (ICEs) may be appealing for two fundamental reasons: Direct electrification seems less promising in heavy-duty transport systems, and fuel cell-based hydrogen vehicle implementation may not proceed at the expected pace due to higher investment costs compared to ICEs. On the other hand, hydrogen combustion is gaining attractiveness and relies on robust and cheap technologies, but it is not the only renewable solution. In this framework, this work presents a methodology to assess the Well-to-Wheel primary energy consumption and CO2 emissions of small heavy-duty vehicles. The methodology is applied in a real case study, namely a passenger coach traveling on a 100 km mission in non-optimized conditions. Therefore, the suitability of hydrogen is compared with standard diesel and other alternative diesel-type fuels (biodiesel and synthetic diesel types). Hydrogen shows competitivity with standard diesel from the point of view of CO2 emission reduction (−29%) while it hides a higher primary energy consumption (+40%) based on the current power-to-hydrogen efficiency declared by electrolyzer manufacturers. Nonetheless, HVO brings the highest benefits both from the point of view of primary energy consumption and emission reduction, namely −35% and 464–634 kgCOjavax.xml.bind.JAXBElement@20caf37c/100km avoided compared to hydrogen. Moreover, the availability of HVO—like other biofuels—does not depend on carbon from CO2 capture and sequestration systems.

Hydrogen, E-Fuels, Biofuels: What Is the Most Viable Alternative to Diesel for Heavy-Duty Internal Combustion Engine Vehicles?

Baldinelli A.
Primo
Methodology
;
Francesconi M.
Secondo
Formal Analysis
;
Antonelli M.
Ultimo
Writing – Review & Editing
2024-01-01

Abstract

Hydrogen mobility embodies a promising solution to address the challenges posed by traditional fossil fuel-based vehicles. The use of hydrogen in small heavy-duty road vehicles based on internal combustion engines (ICEs) may be appealing for two fundamental reasons: Direct electrification seems less promising in heavy-duty transport systems, and fuel cell-based hydrogen vehicle implementation may not proceed at the expected pace due to higher investment costs compared to ICEs. On the other hand, hydrogen combustion is gaining attractiveness and relies on robust and cheap technologies, but it is not the only renewable solution. In this framework, this work presents a methodology to assess the Well-to-Wheel primary energy consumption and CO2 emissions of small heavy-duty vehicles. The methodology is applied in a real case study, namely a passenger coach traveling on a 100 km mission in non-optimized conditions. Therefore, the suitability of hydrogen is compared with standard diesel and other alternative diesel-type fuels (biodiesel and synthetic diesel types). Hydrogen shows competitivity with standard diesel from the point of view of CO2 emission reduction (−29%) while it hides a higher primary energy consumption (+40%) based on the current power-to-hydrogen efficiency declared by electrolyzer manufacturers. Nonetheless, HVO brings the highest benefits both from the point of view of primary energy consumption and emission reduction, namely −35% and 464–634 kgCOjavax.xml.bind.JAXBElement@20caf37c/100km avoided compared to hydrogen. Moreover, the availability of HVO—like other biofuels—does not depend on carbon from CO2 capture and sequestration systems.
2024
Baldinelli, A.; Francesconi, M.; Antonelli, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1268048
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact