Defatted wheat bran, an industrial waste of the food chain, represents a strategic renewable material for modern biorefinery schemes. Through a combination of chemical and biological catalysis, a cascade process was developed to produce high-value fine chemicals, such as carotenoids and lipids, from polysaccharide fraction. Due to the low lignin content and suitable particle size of defatted wheat bran, pretreatment steps are unnecessary, allowing the direct enzymatic or chemical hydrolysis of polysaccharide components (glucan, xylan, and arabinan) to give fermentable sugars. Regarding the biocatalytic approach, the optimisation of the main reaction parameters, such as enzyme dosage (15, 30, 45, 60 FPU Cellic (R) CTec 3 HS/g glucan) and biomass loading (5, 10, 15, 20 wt%), was performed to improve the monosaccharide yield. Regarding the chemical route, a microwaveassisted FeCl3-catalysed approach was optimised in terms of catalyst amount (1.0, 1.3, 1.6 wt%) and reaction time (2.5, 5, 10 min) to maximise the sugar yield, minimizing the formation of furanic derivatives which are strong inhibitors for the subsequent fermentation step. The biological conversion of sugars obtained by both enzymatic and chemical routes into carotenoids and lipids was then performed by adopting the commercial yeast Rhodosporidium toruloides DSM 4444. The simultaneous production of carotenoids and lipids was optimised by investigating the effect of the C/N ratio in the fermentation medium. Under the optimised process conditions (C/ N 60), by fermenting hydrolysate obtained by chemical and enzymatic routes, carotenoid productions of 120 and 180 mg/L and lipids productions of 5.2 and 3.5 g/L were achieved, respectively. The highest carotenoids cell content achieved in this study (14.8 mg/g) is about 5 times higher than the maximum value reported in the literature to date for this yeast. Moreover, Rhodosporidium toruloides achieved the complete conversion of sugars into desired bioproducts for both the biomass hydrolysates demonstrating the effectiveness of the two different catalytic approaches adopted for biomass hydrolysis.

Chemical and enzymatic hydrolysis of waste wheat bran to sugars and their simultaneous biocatalytic conversion to valuable carotenoids and lipids

Di Fidio N.
Primo
;
Carmassi L.
Secondo
;
Fulignati S.;Licursi D.;Raspolli Galletti A. M.
Penultimo
;
Antonetti C.
Ultimo
2024-01-01

Abstract

Defatted wheat bran, an industrial waste of the food chain, represents a strategic renewable material for modern biorefinery schemes. Through a combination of chemical and biological catalysis, a cascade process was developed to produce high-value fine chemicals, such as carotenoids and lipids, from polysaccharide fraction. Due to the low lignin content and suitable particle size of defatted wheat bran, pretreatment steps are unnecessary, allowing the direct enzymatic or chemical hydrolysis of polysaccharide components (glucan, xylan, and arabinan) to give fermentable sugars. Regarding the biocatalytic approach, the optimisation of the main reaction parameters, such as enzyme dosage (15, 30, 45, 60 FPU Cellic (R) CTec 3 HS/g glucan) and biomass loading (5, 10, 15, 20 wt%), was performed to improve the monosaccharide yield. Regarding the chemical route, a microwaveassisted FeCl3-catalysed approach was optimised in terms of catalyst amount (1.0, 1.3, 1.6 wt%) and reaction time (2.5, 5, 10 min) to maximise the sugar yield, minimizing the formation of furanic derivatives which are strong inhibitors for the subsequent fermentation step. The biological conversion of sugars obtained by both enzymatic and chemical routes into carotenoids and lipids was then performed by adopting the commercial yeast Rhodosporidium toruloides DSM 4444. The simultaneous production of carotenoids and lipids was optimised by investigating the effect of the C/N ratio in the fermentation medium. Under the optimised process conditions (C/ N 60), by fermenting hydrolysate obtained by chemical and enzymatic routes, carotenoid productions of 120 and 180 mg/L and lipids productions of 5.2 and 3.5 g/L were achieved, respectively. The highest carotenoids cell content achieved in this study (14.8 mg/g) is about 5 times higher than the maximum value reported in the literature to date for this yeast. Moreover, Rhodosporidium toruloides achieved the complete conversion of sugars into desired bioproducts for both the biomass hydrolysates demonstrating the effectiveness of the two different catalytic approaches adopted for biomass hydrolysis.
2024
Di Fidio, N.; Carmassi, L.; Kasmiarti, G.; Fulignati, S.; Licursi, D.; Raspolli Galletti, A. M.; Antonetti, C.
File in questo prodotto:
File Dimensione Formato  
Di Fidio et al 2024.pdf

non disponibili

Descrizione: Versione finale pubblicata
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 4.35 MB
Formato Adobe PDF
4.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Di Fidio et al 2024 post-print.pdf

embargo fino al 02/12/2026

Descrizione: Post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 5.75 MB
Formato Adobe PDF
5.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
CATTOD-D-24-00206 prima sottomissione.pdf

accesso aperto

Descrizione: Di Fidio et al 2024 versione sottomessa
Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.65 MB
Formato Adobe PDF
4.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1268267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact