We define and compute the L² metric on the framed moduli space of circle invariant 1-instantons on the 4-sphere. This moduli space is four dimensional and our metric is SO(3)×U(1) symmetric. We study the behaviour of generic geodesics and show that the metric is geodesically incomplete. Circle-invariant instantons on the 4-sphere can also be viewed as hyperbolic monopoles, and we interpret our results from this viewpoint. We relate our results to work by Habermann on unframed instantons on the 4-sphere and, in the limit where the radius of the 4-sphere tends to infinity, to results on instantons on Euclidean 4-space.
Adiabatic Dynamics of Instantons on S⁴
Franchetti G;
2017-01-01
Abstract
We define and compute the L² metric on the framed moduli space of circle invariant 1-instantons on the 4-sphere. This moduli space is four dimensional and our metric is SO(3)×U(1) symmetric. We study the behaviour of generic geodesics and show that the metric is geodesically incomplete. Circle-invariant instantons on the 4-sphere can also be viewed as hyperbolic monopoles, and we interpret our results from this viewpoint. We relate our results to work by Habermann on unframed instantons on the 4-sphere and, in the limit where the radius of the 4-sphere tends to infinity, to results on instantons on Euclidean 4-space.File | Dimensione | Formato | |
---|---|---|---|
Franchetti-Schroers.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1508.06566v2.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
900.38 kB
Formato
Adobe PDF
|
900.38 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.