We define and compute the L² metric on the framed moduli space of circle invariant 1-instantons on the 4-sphere. This moduli space is four dimensional and our metric is SO(3)×U(1) symmetric. We study the behaviour of generic geodesics and show that the metric is geodesically incomplete. Circle-invariant instantons on the 4-sphere can also be viewed as hyperbolic monopoles, and we interpret our results from this viewpoint. We relate our results to work by Habermann on unframed instantons on the 4-sphere and, in the limit where the radius of the 4-sphere tends to infinity, to results on instantons on Euclidean 4-space.

Adiabatic Dynamics of Instantons on S⁴

Franchetti G;
2017-01-01

Abstract

We define and compute the L² metric on the framed moduli space of circle invariant 1-instantons on the 4-sphere. This moduli space is four dimensional and our metric is SO(3)×U(1) symmetric. We study the behaviour of generic geodesics and show that the metric is geodesically incomplete. Circle-invariant instantons on the 4-sphere can also be viewed as hyperbolic monopoles, and we interpret our results from this viewpoint. We relate our results to work by Habermann on unframed instantons on the 4-sphere and, in the limit where the radius of the 4-sphere tends to infinity, to results on instantons on Euclidean 4-space.
2017
Franchetti, G; Schroers, Bj
File in questo prodotto:
File Dimensione Formato  
Franchetti-Schroers.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1508.06566v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 900.38 kB
Formato Adobe PDF
900.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1269313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact