We show an analog of the Lorentzian splitting theorem for weighted Lorentz-Finsler manifolds: If a weighted Berwald spacetime of nonnegative weighted Ricci curvature satisfies certain completeness and metrizability conditions and includes a timelike straight line, then it necessarily admits a one-dimensional family of isometric translations generated by the gradient vector field of a Busemann function. Moreover, our formulation in terms of the epsilon-range introduced in our previous work enables us to unify the previously known splitting theorems for weighted Lorentzian manifolds by Case and Woolgar-Wylie into a single framework.

Geometry of weighted Lorentz-Finsler manifolds II: A splitting theorem

Ettore Minguzzi;
2023-01-01

Abstract

We show an analog of the Lorentzian splitting theorem for weighted Lorentz-Finsler manifolds: If a weighted Berwald spacetime of nonnegative weighted Ricci curvature satisfies certain completeness and metrizability conditions and includes a timelike straight line, then it necessarily admits a one-dimensional family of isometric translations generated by the gradient vector field of a Busemann function. Moreover, our formulation in terms of the epsilon-range introduced in our previous work enables us to unify the previously known splitting theorems for weighted Lorentzian manifolds by Case and Woolgar-Wylie into a single framework.
2023
Lu, Yufeng; Minguzzi, Ettore; Ohta, Shin-ichi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1269858
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
social impact