We show differentiability of a class of Geroch's volume functions on globally hyperbolic manifolds. Furthermore, we prove that every volume function satisfies a local anti-Lipschitz condition over causal curves, and that locally Lipschitz time functions which are locally antiLipschitz can be uniformly approximated by smooth time functions with timelike gradient. Finally, we prove that in stably causal spacetimes Hawking's time function can be uniformly approximated by smooth time functions with timelike gradient.
On differentiability of volume time functions
MINGUZZI, ETTORE
2016-01-01
Abstract
We show differentiability of a class of Geroch's volume functions on globally hyperbolic manifolds. Furthermore, we prove that every volume function satisfies a local anti-Lipschitz condition over causal curves, and that locally Lipschitz time functions which are locally antiLipschitz can be uniformly approximated by smooth time functions with timelike gradient. Finally, we prove that in stably causal spacetimes Hawking's time function can be uniformly approximated by smooth time functions with timelike gradient.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


