Some foundational results on the geometry of Lorentz-Minkowski spaces and Finsler spacetimes are obtained. We prove that the local light cone structure of a reversible Finsler spacetime with more than two dimensions is topologically the same as that of Lorentzian spacetimes: at each point we have just two strictly convex causal cones which intersect only at the origin. Moreover, we prove a reverse Cauchy-Schwarz inequality for these spaces and a corresponding reverse triangle inequality. The Legendre map is proved to be a diffeomorphism in the general pseudo-Finsler case provided the dimension is larger than two.

Light cones in Finsler spacetime

MINGUZZI, ETTORE
2015-01-01

Abstract

Some foundational results on the geometry of Lorentz-Minkowski spaces and Finsler spacetimes are obtained. We prove that the local light cone structure of a reversible Finsler spacetime with more than two dimensions is topologically the same as that of Lorentzian spacetimes: at each point we have just two strictly convex causal cones which intersect only at the origin. Moreover, we prove a reverse Cauchy-Schwarz inequality for these spaces and a corresponding reverse triangle inequality. The Legendre map is proved to be a diffeomorphism in the general pseudo-Finsler case provided the dimension is larger than two.
2015
Minguzzi, Ettore
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1269869
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 55
social impact