We prove that for continuous Lorentz-Finsler spaces timelike completeness implies inextendibility. Furthermore, we prove that under suitable locally Lipschitz conditions on the Finsler fundamental function the continuous causal curves that are locally length maximizing (geodesics) have definite causal character, either lightlike almost everywhere or timelike almost everywhere. These results generalize previous theorems by Galloway, Ling and Sbierski, and by Graf and Ling.

Some regularity results for Lorentz-Finsler spaces

Ettore Minguzzi;
2019-01-01

Abstract

We prove that for continuous Lorentz-Finsler spaces timelike completeness implies inextendibility. Furthermore, we prove that under suitable locally Lipschitz conditions on the Finsler fundamental function the continuous causal curves that are locally length maximizing (geodesics) have definite causal character, either lightlike almost everywhere or timelike almost everywhere. These results generalize previous theorems by Galloway, Ling and Sbierski, and by Graf and Ling.
2019
Minguzzi, Ettore; Suhr, Stefan
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1269878
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact