In Lorentz-Finsler geometry it is natural to define the Finsler Lagrangian over a cone (Asanov's approach) or over the whole slit tangent bundle (Beem's approach). In the former case one might want to add differentiability conditions at the boundary of the (timelike) cone in order to retain the usual definition of lightlike geodesics. It is shown here that if this is done then the two theories coincide, namely the `conic' Finsler Lagrangian is the restriction of a slit tangent bundle Lagrangian. Since causality theory depends on curves defined through the future cone, this work establishes the essential uniqueness of (sufficiently regular) Finsler spacetime theories and Finsler causality.

An equivalence of Finslerian relativistic theories

MINGUZZI, ETTORE
2016-01-01

Abstract

In Lorentz-Finsler geometry it is natural to define the Finsler Lagrangian over a cone (Asanov's approach) or over the whole slit tangent bundle (Beem's approach). In the former case one might want to add differentiability conditions at the boundary of the (timelike) cone in order to retain the usual definition of lightlike geodesics. It is shown here that if this is done then the two theories coincide, namely the `conic' Finsler Lagrangian is the restriction of a slit tangent bundle Lagrangian. Since causality theory depends on curves defined through the future cone, this work establishes the essential uniqueness of (sufficiently regular) Finsler spacetime theories and Finsler causality.
2016
Minguzzi, Ettore
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1269922
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact